Google says hdd idle is higher than SSD. Ssd is higher under load but it’s important to look at total energy used. If the SSD spikes high, but is 10x faster, the total energy used will be less.
The Seagate Exos in my aray consume 8-9W each on idle, and 12-13W active. I doubt that a NVME would consume that much in idle, which will be most of the time for data storage.
AFAIK power consumption increases with size on SSDs. And that’s not the case with spinning disks. That’s what I tried to point out, from the perspective of hoarding data (idle disks) bigger sizes are not something to be pursued. Then of course there’s the use case of needing a high volume fast storage (e.g. zfs cache), for which use case these are great!
And they use far more energy. Meanwhile spinning disks can sit idle with all of my hoarded data.
Google says hdd idle is higher than SSD. Ssd is higher under load but it’s important to look at total energy used. If the SSD spikes high, but is 10x faster, the total energy used will be less.
The Seagate Exos in my aray consume 8-9W each on idle, and 12-13W active. I doubt that a NVME would consume that much in idle, which will be most of the time for data storage.
AFAIK power consumption increases with size on SSDs. And that’s not the case with spinning disks. That’s what I tried to point out, from the perspective of hoarding data (idle disks) bigger sizes are not something to be pursued. Then of course there’s the use case of needing a high volume fast storage (e.g. zfs cache), for which use case these are great!