• MacN'Cheezus@lemmy.today
      link
      fedilink
      English
      arrow-up
      5
      ·
      5 months ago

      They did, linear algebra and vector calculus are a thing, but complex numbers have certain properties that you don’t get with vectors and that are quite useful and worth studying.

    • Kogasa@programming.dev
      link
      fedilink
      arrow-up
      4
      ·
      5 months ago

      One definition of the complex numbers is the set of tuples (x, y) in R^(2) with the operations of addition: (a,b) + (c,d) = (a+c, b+d) and multiplication: (a,b) * (c,d) = (ac - bd, ad + bc). Then defining i := (0,1) and identifying (x, 0) with the real number x, we can write (a,b) = a + bi.

        • Kogasa@programming.dev
          link
          fedilink
          arrow-up
          2
          ·
          edit-2
          5 months ago

          Yup, you’ll notice the only thing distinguishing C from R^(2) is that multiplication. That one definition has extremely broad implications.

          For fun, another definition is in terms of 2x2 matrices with real entries. The identity matrix

          1 0
          0 1
          

          is identified with the real number 1, and the matrix

          0 1
          -1 0
          

          is identified with i. Given this setup, the normal definitions of matrix addition and multiplication define the complex numbers.